Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.11.20.567873

ABSTRACT

The unceasing circulation of SARS-CoV-2 leads to the continuous emergence of novel viral sublineages. Here, we isolated and characterized XBB.1, XBB.1.5, XBB.1.9.1, XBB.1.16.1, EG.5.1.1, EG.5.1.3, XBF, BA.2.86.1 and JN.1 variants, representing >80% of circulating variants in November 2023. The XBB subvariants carry few but recurrent mutations in the spike, whereas BA.2.86.1 and JN.1 harbor >30 additional changes. These variants replicated in IGROV-1 but no longer in Vero E6 and were not markedly fusogenic. They potently infected nasal epithelial cells, with EG.5.1.3 exhibiting the highest fitness. Antivirals remained active. Neutralizing antibody (NAb) responses from vaccinees and BA.1/BA.2-infected individuals were markedly lower compared to BA.1, without major differences between variants. An XBB breakthrough infection enhanced NAb responses against both XBB and BA.2.86 variants. JN.1 displayed lower affinity to ACE2 and higher immune evasion properties compared to BA.2.86.1. Thus, while distinct, the evolutionary trajectory of these variants combines increased fitness and antibody evasion.

3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.15.528538

ABSTRACT

The SARS-CoV2 Omicron variants have acquired new Spike mutations leading to escape from the most of the currently available monoclonal antibody treatments reducing the options for patients suffering from severe Covid-19. Recently, both in vitro and in vivo data have suggested that Sotrovimab could retain partial activity against recent omicron sub-lineage such as BA.5 variants, including BQ.1.1. Here we report full efficacy of Sotrovimab against BQ.1.1 viral replication as measure by RT-qPCR in a non-human primate challenge model.


Subject(s)
COVID-19
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.02.526749

ABSTRACT

Soon after the beginning of the COVID-19 pandemic in early 2020, the Betacoronavirus SARS-CoV-2 infection of several mink farms breeding American minks (Neovison vison) for fur was detected in several countries of Europe. The risk of a new reservoir formation and of a reverse zoonosis from minks was then a major concern. The aim of this study was to investigate the four French mink farms for the circulation of SARS-CoV-2 at the end of 2020. The investigations took place during the slaughtering period thus facilitating different types of sampling (swabs and blood). In one of the four mink farms, 96.6% of serum samples were positive in SARS-CoV-2 ELISA coated with purified N protein recombinant antigen and 54 out of 162 (33%) pharyngo-tracheal swabs were positive by RT-qPCR. The genetic variability among 12 SARS-CoV-2 genomes sequenced in this farm indicated the co-circulation of several lineages at the time of sampling. All SARS-CoV-2 genomes detected were nested within the 20A clade (Nextclade), together with SARS-CoV-2 genomes from humans sampled at the same period. The percentage of SARS-CoV-2 seropositivity by ELISA varied between 0.5 and 1.2% in the three other farms. Interestingly, among these three farms, 11 pharyngo-tracheal swabs and 3 fecal pools from two farms were positive by end-point RT-PCR for an Alphacoronavirus highly similar to a mink coronavirus sequence observed in Danish farms in 2015. In addition, a mink Caliciviridae was identified in one of the two positive farms for Alphacoronavirus. The clinical impact of these unapparent viral infections is not known. The co-infection of SARS-CoV-2 with other viruses in mink farms could contribute to explain the diversity of clinical symptoms noted in different infected farms in Europe. In addition, the co-circulation of an Alphacoronavirus and SARS-CoV-2 within a mink farm would increase potentially the risk of viral recombination between alpha and betacoronaviruses already suggested in wild and domestic animals, as well as in humans.


Subject(s)
COVID-19 , Coinfection
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.22.521201

ABSTRACT

The landscape of SARS-CoV-2 variants dramatically diversified with the simultaneous appearance of multiple sub-variants originating from BA.2, BA.4 and BA.5 Omicron sub-lineages. They harbor a specific set of mutations in the spike that can make them more evasive to therapeutic monoclonal antibodies. In this study, we compared the neutralizing potential of monoclonal antibodies against the Omicron BA.2.75.2, BQ.1, BQ.1.1 and XBB variants, with a pre-Omicron Delta variant as a reference. Sotrovimab retains some activity against BA.2.75.2, BQ.1 and XBB as it did against BA.2/BA.5, but is less active against BQ.1.1. Within the Evusheld/AZD7442 cocktail, Cilgavimab lost all activity against all subvariants studied, resulting in loss of Evusheld activity. Finally, Bebtelovimab, while still active against BA.2.75, also lost all neutralizing activity against BQ.1, BQ.1.1 and XBB variants.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.09.515748

ABSTRACT

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p=0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8 - 8 for delta; 5.6 log10 copies/mL 95% CI 4.8 - 6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4 - 4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9 - 3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.

7.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1803095.v1

ABSTRACT

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. To inform on the origin of SARS-CoV-2, we evaluated the clinical, epidemiological and evolutionary consequences of a potential BANAL-236 spillover into humans using animal models. The virus replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a more virulent strain like Wuhan SARS-CoV-2. Yet we found no evidence of antibodies recognizing bat sarbecoviruses in populations highly exposed to bats, indicating that such infections, if they occur, are rare. Six passages in mice or in human intestinal cells, mimicking putative early spillover events, selected adaptive mutations without appearance of a furin cleavage site and not change in virulence. We thus conclude that the hypothesis of the SARS-CoV-2 pandemic being preceded by silent circulation in humans of BANAL-236-like strains leading to the acquisition of a furin cleavage site is unlikely. Our studies suggest that a specific search for a furin cleavage site in sarbecoviruses in the wild should be pursued to understand the origin of the SARS-CoV-2 pandemics.


Subject(s)
COVID-19
8.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1502293.v1

ABSTRACT

Recombination is a crucial process in the evolution of many organisms. Although the evolutionary reasons behind its occurrence in RNA viruses are debated, this phenomenon has been associated with major epidemiological events such as virus host range expansion, antigenic shift or variation in virulence 1,2, and this process occurs frequently in positive strand RNA viruses such as coronaviruses. The SARS-CoV-2 pandemic has been associated with the repeated emergence of variants of concern presenting increased transmissibility, severity or immune escape 3. The recent extensive circulation of Delta worldwide and its subsequent replacement by viruses of the Omicron lineage 4 (BA.1 then BA.2), have created conditions for genetic exchanges between viruses with both genetic diversity and phenotypic specificities 5-7. Here we report the identification and in vitro and in vivo characterization of a Delta-Omicron recombinant in Europe. This recombinant exhibits immune escape properties similar to Omicron, while its behavior in mice expressing the human ACE2 receptor is more similar to Delta. This recombinant provides a unique and natural opportunity to better understand the genotype to phenotype links in SARS-CoV-2.

9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.09.459577

ABSTRACT

SARS-CoV-2 infection results in impaired interferon response in severe COVID-19 patients. However, how SARS-CoV-2 interferes with host immune response is incompletely understood. Here, we sequenced small RNAs from SARS-CoV-2-infected human cells and identified a micro-RNA (miRNA) encoded in a recently evolved region of the viral genome. We show that the virus-encoded miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer and they are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 employs a virus-encoded miRNA to hijack the host miRNA machinery and evade the interferon-mediated immune response.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-871965.v1

ABSTRACT

The animal reservoir of SARS-CoV-2 is unknown despite reports of various SARS-CoV-2-related viruses in Asian Rhinolophus bats, including the closest virus from R. affinis, RaTG13. Several studies have suggested the involvement of pangolin coronaviruses in SARS-CoV-2 emergence. SARS-CoV-2 presents a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain (RBD) to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 pathway have not yet been identified, though they would be key in understanding the origin of the epidemics. Here we show that such viruses indeed circulate in cave bats living in the limestone karstic terrain in North Laos, within the Indochinese peninsula. We found that the RBDs of these viruses differ from that of SARS-CoV-2 by only one or two residues, bind as efficiently to the hACE2 protein as the SARS-CoV-2 Wuhan strain isolated in early human cases, and mediate hACE2-dependent entry into human cells, which is inhibited by antibodies neutralizing SARS-CoV-2. None of these bat viruses harbors a furin cleavage site in the spike. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.10.451880

ABSTRACT

SARS-CoV-2 has infected almost 200 million humans and caused over 4 million deaths worldwide. Evaluating countermeasures and improving our understanding of COVID-19 pathophysiology require access to animal models that replicate the hallmarks of human disease. Mouse infection with SARS-CoV-2 is limited by poor affinity between the virus spike protein and its cellular receptor ACE2. We have developed by serial passages the MACo3 virus strain which efficiently replicates in the lungs of standard mouse strains and induces age-dependent lung lesions. Compared to other mouse-adapted strains and severe mouse models, infection with MACo3 results in mild to moderate disease and will be useful to investigate the role of host genetics and other factors modulating COVID-19 severity.


Subject(s)
COVID-19 , Lung Diseases
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.18.436013

ABSTRACT

Receptor recognition is a major determinant of viral host range, as well as infectivity and pathogenesis. Emergences have been associated with serendipitous events of adaptation upon encounters with a novel host, and the high mutation rate of RNA viruses has been proposed to explain their frequent host shifts. SARS-CoV-2 extensive circulation in humans has been associated with the emergence of variants, including variants of concern (VOCs) with diverse mutations in the spike and increased transmissibility or immune escape. Here we show that unlike the initial virus, VOCs are able to infect common laboratory mice, replicating to high titers in the lungs. This host range expansion is explained in part by the acquisition of changes at key positions of the receptor binding domain that enable binding to the mouse angiotensin-converting enzyme 2 (ACE2) cellular receptor, although differences between viral lineages suggest that other factors are involved in the capacity of SARS-CoV-2 VOCs to infect mice. This abrogation of the species barrier raises the possibility of wild rodent secondary reservoirs and provides new experimental models to study disease pathophysiology and countermeasures.


Subject(s)
Severe Acute Respiratory Syndrome , Infections
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.12.430472

ABSTRACT

SARS-CoV-2 B.1.1.7 and B.1.351 variants emerged respectively in United Kingdom and South Africa and spread in many countries. Here, we isolated infectious B.1.1.7 and B.1.351 strains and examined their sensitivity to anti-SARS-CoV-2 antibodies present in sera and nasal swabs, in comparison with a D614G reference virus. We established a novel rapid neutralization assay, based on reporter cells that become GFP+ after overnight infection. B.1.1.7 was neutralized by 79/83 sera from convalescent patients collected up to 9 months post symptoms, almost similar to D614G. There was a mean 6-fold reduction in titers and even loss of activity against B.1.351 in 40% of convalescent sera after 9 months. Early sera from 19 vaccinated individuals were almost as potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Nasal swabs from vaccine recipients were not neutralizing, except in individuals who were diagnosed COVID-19+ before vaccination. Thus, faster-spreading variants acquired a partial resistance to humoral immunity generated by natural infection or vaccination, mostly visible in individuals with low antibody levels.


Subject(s)
COVID-19
14.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-50301.v1

ABSTRACT

Non-human primates infected with SARS-CoV-2 exhibit mild clinical signs. Here we used a mathematical model to characterize in detail the viral dynamics in 31 cynomolgus macaques infected with 106 pfu of SARS-CoV-2 for which nasopharyngeal and tracheal viral load were frequently assessed. We identified that infected cells had a large daily viral production (>104 virus) and a within-host reproductive basic number of 6 and 4 in nasopharyngeal and tracheal compartment, respectively. After peak viral load, infected cells were rapidly cleared with a half-life of 9 hours, with no significant association between cytokine elevation and clearance. Translating our model to the context of human-to-human infection, human mild infection may be characterized by a peak occurring 4 days after infection, a viral shedding of ~11 days and a generation time of 4 days. These results improve the understanding of SARS-CoV-2 viral replication and better understand the infection to SARS-CoV-2 in humans.

15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.29.20142596

ABSTRACT

Background: Children have a lower rate of COVID-19, potentially related to cross-protective immunity conferred by seasonal coronaviruses (HCoVs). We tested if prior infections with seasonal coronaviruses impacted SARS-CoV-2 infections and related Multisystem Inflammatory Syndrome (MIS). Methods: This cross-sectional observational study in Paris hospitals enrolled 739 pauci or asymptomatic children (HOS group) plus 36 children with suspected MIS (MIS group). Prevalence, antigen specificity and neutralizing capability of SARS-CoV-2 antibodies were tested. Antibody frequency and titres against Nucleocapsid (N) and Spike (S) of the four seasonal coronaviruses (NL63, HKU1, 229E, OC43) were measured in a subset of seropositive patients (54 SARS-CoV-2 (HOS-P subgroup) and 15 MIS (MIS-P subgroup)), and in 118 matched SARS-CoV-2 seronegative patients (CTL subgroup). Findings: SARS-CoV-2 mean prevalence rate in HOSP children was 11.7% from April 1 to June 1. Neutralizing antibodies were found in 55.6% of seropositive children, and their relative frequency increased with time (up to 100 % by mid-May). A majority of MIS children (25/36) were SARS-CoV-2 seropositive, of which all tested (n=15) had neutralizing antibodies. On average, seropositive MIS children had higher N and S1 SARS-CoV-2 titres as compared to HOS children. Patients from HOS-P, MIS-P, and CTL subgroups had a similar prevalence of antibodies against the four seasonal HCoVs (66.9 -100%). The level of anti-SARS-CoV-2 antibodies was not significantly different in children who had prior seasonal coronavirus infection. Interpretation: Prior infection with HCoVs does not prevent SARS-CoV-2 infection and related MIS in children. Children develop neutralizing antibodies after SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections , Cryopyrin-Associated Periodic Syndromes , Severe Acute Respiratory Syndrome , COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.24.059576

ABSTRACT

Following the emergence of coronavirus disease (COVID-19) in Wuhan, China in December 2019, specific COVID-19 surveillance was launched in France on January 10, 2020. Two weeks later, the first three imported cases of COVID-19 into Europe were diagnosed in France. We sequenced 97 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from samples collected between January 24 and March 24, 2020 from infected patients in France. Phylogenetic analysis identified several early independent SARS-CoV-2 introductions without local transmission, highlighting the efficacy of the measures taken to prevent virus spread from symptomatic cases. In parallel, our genomic data reveals the later predominant circulation of a major clade in many French regions, and implies local circulation of the virus in undocumented infections prior to the wave of COVID-19 cases. This study emphasizes the importance of continuous and geographically broad genomic sequencing and calls for further efforts with inclusion of asymptomatic infections.


Subject(s)
Coronavirus Infections , COVID-19 , Infections
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.21.20068858

ABSTRACT

It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their antibody response profile. Here, we performed a pilot study to assess the levels of anti-SARS-CoV-2 antibodies in samples taken from 491 pre- epidemic individuals, 51 patients from Hopital Bichat (Paris), 209 pauci-symptomatic individuals in the French Oise region and 200 contemporary Oise blood donors. Two in-house ELISA assays, that recognize the full-length nucleoprotein (N) or trimeric Spike (S) ectodomain were implemented. We also developed two novel assays: the S-Flow assay, which is based on the recognition of S at the cell surface by flow-cytometry, and the LIPS assay that recognizes diverse antigens (including S1 or N C- terminal domain) by immunoprecipitation. Overall, the results obtained with the four assays were similar, with differences in sensitivity that can be attributed to the technique and the antigen in use. High antibody titers were associated with neutralisation activity, assessed using infectious SARS-CoV- 2 or lentiviral-S pseudotypes. In hospitalized patients, seroconversion and neutralisation occurred on 5-14 days post symptom onset, confirming previous studies. Seropositivity was detected in 29% of pauci-symptomatic individuals within 15 days post-symptoms and 3 % of blood of healthy donors collected in the area of a cluster of COVID cases. Altogether, our assays allow for a broad evaluation of SARS-CoV2 seroprevalence and antibody profiling in different population subsets.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL